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Attractive forces in sterically stabilized colloidal suspensions: From the effective potential
to the phase diagram
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The potential of mean force for macroparticles at infinite dilution is computed for several models of solvent-
solvent and solvent-macroparticle interactions by using the reference hypernetted chain~RHNC! integral
equations with Rosenfeld’s density functional theory bridge functions. The phase diagram of the associated
effective fluid is obtained from the RHNC free energy for the fluid branch and the perturbation theory for the
solid one. The computation of the effective potential and of the fluid branch is tested by comparison with
Monte Carlo simulation. The important modifications with respect to the pure hard spheres that were previ-
ously reported are confirmed. The possibility of inverting the relative stability of the fluid-fluid and the
fluid-solid transitions by appropriate combination of the interaction parameters is shown. The importance of a
fine description of the interactions is illustrated in the example of the role of the range of the solvent-solvent
interaction potential.
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I. INTRODUCTION

Understanding the phase behavior of colloidal susp
sions and predicting it from a microscopic approach is sti
great challenge in the physics of liquids. Indeed, these
tems exhibit particular features that distinguish them fr
simple fluids or ordinary mixtures and make their theoreti
study more difficult@1,2#. To take the example of stericall
stabilized colloids suspended in an ordinary solvent—the
tual physical systems that motivated this study—their fi
unusual characteristic is the big difference in size betw
solvent and solute particles~hereafter, small and large pa
ticles will be referred to as components 1 and 2!. This purely
geometrical asymmetry being a generic property of colloi
its consequences have been investigated in numerous
retical studies based on the asymmetric binary hard sp
~HS! mixture model. The sole parameter of this model is
diameter ratioR5D2 /D1@1 and the relevant thermody
namic variables are the packing fractionsh i

5(p/6)r iDi
3 (r i is the number density of componenti ).

However, the behavior of this model forR@1 came to be
understood on the whole only recently~see, for example
Refs. @3,4# and references therein!, because of several tech
nical difficulties. On one hand, the accuracy of stand
methods based on the Ornstein Zernike equations~OZE! is
uncertain since their sensitivity to approximate closures
comes more critical asR increases@5#. This prompted the use
of an alternative route based on the density functional the
~DFT! ~see Refs.@6,7#!. On the other hand, computer sim
lations that might validate the theoretical methods
equally problematic: first because the numberN1 of small
particles required to achieve comparable packing fracti
rapidly becomes prohibitive~the ratio N1 /N2 increases as
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R3), second because the solute particles are artificially ‘‘f
zen’’ by the presence of the solvent, with a resulting po
statistics. Many efforts have been made to tackle these p
lems. From the point of view of simulations, specialized
gorithms have been developed@8–10# that made it possible
to go beyond the early results of Jacksonet al. @11#. On the
other hand, various improvements of the integral equati
@12–15# ~IE! and DFT ~see, for example, Refs.@6,7#! ap-
proaches have been proposed. In this way, Biben and Ha
@16# detected a phase instability in sufficiently asymmet
HS mixture with the Balloneet al. @13# and the Rogers and
Young @12# IE, a result substantiated by new simulation da
obtained by the configuration bias Monte Carlo method@8#.
Even though the underlying mechanism~the depletion effect!
was known for quite a long time~see the work of Asakura
and Oosawa@17#, and that of Vrij@18#!, this was a surprising
result, since it contradicted the conclusion drawn by Lebo
itz and Rowlinson@19# from the Percus- Yevick~PY! closure
@20# which predicts a homogeneous HS mixture at all pa
ing fractions and size ratios. This phase transition driven
purely entropic effects became thus a source of great inte
that finally yielded a well established phase diagram, fi
computed by Dijkstraet al. @3# ~see references therein for th
related work!. The main conclusion is that a sufficientl
asymmetric hard sphere mixture shows both a fluid-so
~F-S! and a fluid-fluid~F-F! transition but the latter is alway
metastable.

These results relative to the depletion effect are of cou
of fundamental value but the remaining question is the
evance of the underlying model to real colloids. Some c
loids might indeed behave as hard spheres but the assoc
universal phase diagram is not the generic one for a q
large number of colloidal suspensions. Indeed, if all act
mixtures were hard-sphere-like, it would be impossible
observe for example a dense fluid of solute particles s
pended in a liquid solvent (h1;0.4). This is obviously dif-
ferent from the behavior of many real colloids that oft
show stable fluid phases that are rich in solute particles@1,2#.
d-
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Also, temperature often plays a major role~a striking ex-
ample is the lower consolute point observed in some rev
micellar systems@21#! in contrast with the case of pure ha
spheres for which it is not a relevant thermodynamic va
able. Furthermore, experiments on real colloids, such
coated silica particles in organic solvents, show that the
fective interaction between the solutes may be turned fr
attractive to repulsive by changing the nature of the solv
~see, for e.g., Ref.@22#!, even when the solvent particles a
of similar size. The composition of the surface layer of
verse micelles is also known to have a strong impact on t
phase behavior~see, e.g., Ref.@23#!.

All these features being foreign to the HS model, o
needs to go further in the modeling by taking into acco
specific interactions between the components. The early
tempts to introduce attractive forces based on Baxter’s st
hard sphere model@24# ~see, e.g., Refs.@25–30# and refer-
ences therein! gave useful indications, in particular on th
crucial role played by heteroadhesions~solvation forces!.
This model, however, ignores the range of the interact
potentialsui j between components and more realistic mod
such as the Yukawa or the Lennard-Jones~LJ! potentials
were considered, first at the level of the potential of me
force at infinite dilutionFe f f ~for earlier work, see, for ex-
ample,@31,32#!. Attractive forces were more recently consi
ered in Refs.@33,34# and similar studies of charged system
can be found for example in Refs.@35–37#. These studies
have shown that this improved description of the interacti
ui j can have a strong impact on the potential of mean fo
The same observation can be made from the nonadditive
model @38–40#.

These modifications are of course expected to exer
equally strong influence on the phase behavior. Howe
with the exceptions of a previous work from our group@41#
and that of Louiset al. @38# on the phase diagram of th
nonadditive HS mixtures, all other investigations of the ro
of attractive forces were limited to the changes they ind
on the potential of mean force or on structural quantities~see
also Ref.@42# for a discussion of nonadditive HS!. The main
goal of the present work is thus to discuss in more detail
influence of attractive forces on the phase diagram. In p
ticular, we will analyze the prediction@41# that the relative
position of the F-F and F-S coexistence lines can even
inverted when compared to hard spheres. On the other h
the theoretical determinations ofFe f f always involve ap-
proximations. It is thus important to test them by simulati
in order to gain confidence in their predictions on the role
the attractions. From the simulation point of view, the situ
tion is even more problematic than with pure HS system
Indeed, in addition to the difficulties mentioned above in t
pure HS case, one needs to monitor the difference in en
between successive configurations that might involve sev
thousand small particles. Besides our previous results@43#
~size ratio R55) and those presented in this paperR
510), we are only aware of the simulation data of Shin
et al. @44# (R510) and the recent work of Louiset al. @45#
(R55). This progressive accumulation of simulation da
will help validate the various theoretical routes to obta
Fe f f. This was already started in our recent work@46# in
06140
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which different methods for computingFe f f were compared.
From this study completed by the recent data presented h
it appears that the RHNC closure of the OZE with brid
functionsBi j computed from Rosenfeld’s Fundamental Me
sure Functional~FMF! is the most reliable method for ob
taining the effective potential~this method will be referred to
as the RHNC/FMF!. A similar discussion has been made
Ref. @45# for Fe f f computed with the DFT, but the simula
tion data were for lower size ratio and solvent density th
those we used to test the RHNC/FMF method.

In order to compute the phase diagram, the mixture w
treated in these studies at the effective one-component
level with assumed pairwise additive interactions. In this a
proach~MacMillan-Mayer theory@47#!, the focus is on the
fluid of solute particles, the influence of the solvent bei
incorporated into the effective pair interactionFe f f which is
computed given some model for the interaction potentialsui j
between components.Fe f f is used in a second step to obta
the phase diagram of the effective fluid by methods app
priate to one-component fluids. Among these, the refere
hypernetted chain~RHNC! @48# integral equation used in thi
work as in our previous ones@41,49# is known to be one of
the most accurate. For the solid phase, we used the pertu
tion theory @50# which is accurate enough for interaction
having the characteristics ofFe f f ~see Ref.@49# for a recent
discussion of this point!. Besides being computationall
more convenient than a direct study of the true mixture, t
effective fluid approach is the only one which can be tes
at each step by simulation with present algorithm
Since—as discussed below—the two steps for computing
phase diagram do indeed test favorably by simulation,
now have a robust theoretical scheme for studying comp
models of colloidal suspensions. It permits the analysis
the connection between the phase diagram and the m
scopic parameters of the system. In this framework, we w
present an example of a combination of interactionsui j that
leads to a stable dense fluid phase of solute particles
dense solvent. This possibility remedies the most undesir
feature of the HS phase diagram when dealing with susp
sions in which significant attractive forces are expected.

To this end, this paper is organized as follows. We fi
recall the theoretical background for computing the ph
diagram for a given microscopic model. Then we confirm
simulation that the RHNC integral equation is accura
enough for studying the F-F transition. In the following pa
we study the RHNC phase diagram of two different mod
and the relation between the effective interaction and
phase behavior. In particular, we try to clarify the role of t
range of the solvent-solvent attraction by studying the eff
tive potential by simulation and the integral equati
method.

II. THE EFFECTIVE FLUID APPROACH

As stressed in the Introduction, the study will be co
ducted here at the effective one-component fluid level@47#
because of the lack of validated theoretical methods fo
direct treatment of the mixture. The binary mixture is r
duced to an effective one-component fluid of solute partic
4-2



ti
e

lm

te
n

e-

as
he
is

is-
ex

y
le

ai
a

siz
o
in

ve
on

f
g
e

d
en

o
e

ix

ac-
m-

-
e-

-

-
eter

ent
hen

i-

ive
nd

e of
sid-
sing
-

-

ed

xtent
aller

of
a-

wa
s

t

ATTRACTIVE FORCES IN STERICALLY STABILIZED . . . PHYSICAL REVIEW E66, 061404 ~2002!
and the presence of the solvent is replaced by an effec
pair interaction computed at infinite dilution of the solut
This reduction is detailed for example in Refs.@3,51#. Once
the effective pair interactionFe f f is known, the phase
boundaries of the effective fluid are obtained from the He
holtz free energy by the common tangent construction.

A. The pair potential approximation

The potential of mean forceF(RN2;m1) for N2 solute
particles immersed in a pure solvent at fixed chemical po
tial m1 is defined from the solute distribution functio
rN2(RN2;m1 ;V;T) in the semigrand ensemble@47#. Its for-
mal expression involves a sum over all numbersN1 of small
particles of the integral over their coordinatesr N1 of the
Boltzmann factor exp@2b( i , ju11(r i j )1( i ,Ju12(r i ,RJ)#,
where u11 and u12 are the solvent-solvent and the solut
solvent interaction potentials andb51/kBT. This expression
is, however, so intractable that the pairwise additivity
sumption is usually invoked to permit the reduction of t
binary mixture to an effective one-component fluid. In th
approximation, one considers thisN2-body potential as the
sum of two-body effective interactions

F~RN2;m1!;(
I ,J

N2

Fe f f~RI ,RJ ;m1!. ~1!

The exactF(RN2;m1) is nonadditive because the solvent d
tribution about a given set of solute particles cannot be
pressed solely in terms of its distributionr1(r ;RI ,RJ) about
pairs (I ,J). Even if arguments might be invoked to justif
this, analytical studies of correlations at the three partic
level ~see, e.g., Ref.@52# for the Lennard-Jones fluid! show
that the presence of a third particle in the vicinity of a p
changes the distribution of the remaining ones about the p
In a mixture, this effect is expected to increase withh1, as
confirmed by our previous simulation of the HS model@53#.
Many-body effects were indeed detected even at high
ratio (R520). These were expected to slightly shift the c
existence lines towards higher values of the solvent pack
fraction in the reservoir. For more general models, howe
this point needs to be clarified and remains the only unc
trolled approximation of this treatment.

Within this assumption of pairwise additivity o
F(RN2;m1), the effective fluid of solute particles interactin
via Fe f f is then studied by standard methods for on
component fluids.

B. Phase boundaries of the effective fluid

In the semigrand ensemble, the solvent is characterize
its chemical potential or at fixed temperature, by the solv
density in the reservoir~it will be convenient to work with
the reduced densityr* [r1(D1

HS)3, whereD1
HS is defined

below!. In the construction of the fluid and solid branches
the iso-r* free energies for the solute particles, it is assum
that the solvent remains in a single phase~this means that we
are not considering the full phase diagram of the binary m
ture!. Therefore, when we explore different values ofr* a
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given choice of the solvent interaction parameters might
tually correspond either to a supercritical solvent or to a te
perature outside the coexistence domain in the (T2r* )
plane.

1. The fluid branch

The fluid branch of the effective fluid is obtained by com
puting the RHNC free energy. The well-known RHNC int
gral equation is detailed in Ref.@48# to which we refer for
explicit expressions ofFRHNC. It supplements the Ornstein
Zernike equation@50# for the total and direct correlation
functionsh(r )5g(r )21 andc(r ):

h~r !2c~r !5rE dr 8h~r 8!c~ ur2r 8u! ~2!

by the closure

g~r !5exp@2f~r !/kBT1h~r !2c~r !2b0~r !#, ~3!

where the interaction potentialf(r ) corresponds here to
Fe f f defined above.b0(r ) is the bridge function of a refer
ence system, here a system of hard spheres, whose diam
sHS is determined by the optimization condition@54#

E dr @g~r !2g0~r !#
]b0~r !

]sHS
50. ~4!

The RHNC has been applied to a variety of state independ
interactions and has been shown to be very accurate w
compared with simulation@see, for example, Refs.@5,55,56#
and references therein#. In this work, we used the parametr
zation ofb0(r ) of Malijesvsky and Labik@57# and used the
algorithm of Labiket al. @58# for solving Eqs.~2!–~4!. This
closure will be tested in our particular case of an effect
potential exhibiting both long range tails as the LJ model a
complex structures as depletion potentials. For the rang
thermodynamic variables and interaction parameters con
ered here, it is almost as accurate as that computed u
Rosenfeld’s DFT@59#. But since it allows a much faster nu
merical solution of Eqs.~2!–~4! it was preferred in the com
putation of the iso-r* free energies. In the (r* ,r2) domain
where numerical convergence is not possible, we follow
the strategy detailed in Ref.@41#. The behavior ofFe f f being
less extreme when attractive forces are considered, the e
of the nonconvergence domain is in most cases much sm
than with pure HS.

2. The solid branch

To determine the F-S coexistence line the solid branch
the free energyFS was obtained from a variational perturb
tion theory~VPT!:

FS~r2!5FHS~r2!1^Fe f f2FHS&HS. ~5!

The technical details of our calculations ofFS were identical
to those in the study of the Yukawa potential by Hasega
@60# and in Refs.@41,49#. The accuracy of this scheme ha
been discussed in detail in Ref.@49# where it was shown tha
4-3
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at the densitiesr2 of the solid state, the perturbation trea
ment of a short range interaction asFe f f is sufficiently ac-
curate.

C. Potential of mean force at infinite dilution

1. General expression ofFeff

The potential of mean forceFe f f(r ;m1) between a pair of
solute particles separated by a distancer immersed in a pure
solvent at chemical potentialm1 can be obtained from the
distribution function of solute particles at infinite dilution

g22~r ;r2→0,m1!5exp@2b~u22~r !1Fe f f~r ;m1!#, ~6!

u22 being the direct interaction between the pair. In practi
at fixed T, the solvent bulk densityr* is used as the inde
pendent variable as mentioned above.

2. The integral equations route

In the IE route toFe f f, the solute pair distribution func
tion ~pdf! g22 is computed by taking the limitr2→0 of the
OZE @50#:

g i j ~r !5(
k

rkE dr 8cik~r 8!hk j~ ur2r 8u!, ~7!

whereg i j 5hi j 2ci j is the series function~with hi j and ci j
the total and direct correlation functions!. For a binary mix-
ture, Eq.~7! must be supplemented by three closures,

gi j 5exp$2bui j 1g i j 2bi j %, ~8!

where bi j is the bridge function. In the limitr2→0, the
equation for the solvent is uncoupled from the remain
ones:

g11~r !5r1E dr 8h11~r 8!c11~ ur2r 8u!. ~9!

The resultingc11 is fed into the equation

g12~r !5r1E dr 8h12~r 8!c11~ ur2r 8u! ~10!

to obtainh12 andc12, the final input in the equation giving
g22:

g22~r !5r1E dr 8h12~r 8!c12~ ur2r 8u!. ~11!

In this paper we will consider two different closures. T
HNC closure, in which one takesbi j 50 gives

bFHNC
e f f ~r ;r1!52g22~r !. ~12!

This closure is easy to implement but is not accurate enou
especially for non-hard-core interactions@46#. It was em-
ployed here only for the comparison with the results obtain
from the more sophisticated and very accurate RHNC/F
06140
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closure using thebi j obtained from Rosenfeld’s DFT. In th
RHNC ~see, e.g., Refs.@14# and@31# for macroparticles in a
solvent! one has

bFRHNC
e f f ~r ;r1!52g22~r !1b22~r !, ~13!

where b22(r ) is the bridge function for solutes at infinit
dilution. We note here that the evaluation from the FMF
the bi j (r ) in the test particle limit, bti@$r i(r …;r %#

5b(m i ,ex
HS @$r igti(r );r1%#2m i ,ex

HS ($r i%))1g̃ t i(r ), requires the
excess chemical potential functionalm i ,ex

HS and the auxiliary

function g̃ t i(r )5( jr j*dr 8ci j
(2),HS($r i%;ur2r 8u)ht j (r 8),

where ci j
(2),HS is the Percus Yevick HS direct correlatio

function andht j the test particle-j particle total correlation
function. We refer the reader to Rosenfeld’s paper@59# for
the expression ofm i ,ex

HS and to@46# for implementation details
in our present case~see, also, Ref.@61# for HS near a hard
wall!. Besides the fact that the numerical evaluation of
bi j is more involved than when one uses parametrized for
the main difference is that an extra cycle is required by
convergence of the bridge function~note that its expression
involves both the reference system and the correlation fu
tions ht j for the actual interactionsui j ). This method has
been successfully applied by Kahlet al. @62# to various mix-
tures but they did not consider highly asymmetric ones.

This method shares with some DFT calculations@40,45#
the use of Rosenfeld’s functional, but in a quite differe
manner. The formal connection of Eqs.~6! and~13! with the
DFT approach is detailed in Ref.@7#. In a strict DFT calcu-
lation, one uses the equation for the profile that results fr
the minimization of a given grand potential functional@63#,
while in the IE route, this equation for the profile is reca
through the test particle consistency in the form of a clos
of the OZE with an imposed bridge functional@59#. This
may have quite different consequences when solvent-sol
attractions are involved. While the DFT calculation uses
rectly the HS functional in the equation for the profile@un-
less some additional prescription is made for the attrac
part @63##, the only assumption made in the RHNC/FMF cl
sure is that the HS bridge functional~not function: recall that
this functional depends on the correlation functions for
actual interactionsui j ) is universal. Since these interaction
appear directly in the closures of the OZE, Eq.~8!, the
RHNC/FMF can work even for a non-hard-sphere solvent
some ‘‘critical’’ cases involving very fine details of the var
ous correlations, it needs, however, to be improved@46#. On
the whole, the treatment of solvent-solvent attractive for
involves thus a much weaker assumption than the pure
glect of the solvent-solvent attractive contributions to t
free energy functional. In any case, improvements of
functional for treating the attractive contributions can read
be incorporated into the IE approach through the correspo
ing bridge functional.

Finally, we mention here that under conditions where
disturbance of the distribution of the solvent around an i
lated solute, induced by an approaching second solute
expected to be weak~low r* and no long range solute
solvent interaction!, Fe f f can be computed more simply b
4-4
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integrating the mean force Fe f f(R12)5*dr¹u12(r
2R1)r1(r ;R1 ,R2) and replacing the actual solvent dens
about a pair of solutes at (R1 ,R2) by

r1~r ;R1 ,R2!5r1g12~ ur2R1u!g12~ ur2R2u! ~14!

~superposition approximation@64#! where g12(r ) is the
solvent-isolated solute pdf.

D. Models with attractions

Since the purpose of the present work is to discuss
microscopic parameters that exert the most influence on
phase behavior rather than to investigate a specific sys
~see, for example, the study by similar techniques of
effective interaction in reverse micelles@65#, the behavior of
passivated nanoparticles@66# or the molecular dynamics
study of Shintoet al. @67# of colloidal particles in alcohol-
water mixtures!, we consider here, as in our previous work
two simple models of spherically symmetric interaction
namely the solvent-solvent Lennard-Jones~LJ! potential
~with parameterse ands):

uLJ~r !54eF S s

r D 12

2S s

r D 6G ~15!

and the solute-solvent Yukawa potential~parameterse12,
D12, andz12):

u12~r !5H `, r ,D12

2e12exp$2z12~r 2D12!%/r , r>D12.
~16!

For convenience, the following reduced parameters will
used: the solute/solvent diameter ratioR5D2 /D1

HS and the
solute-solvent hard core diameterD125

1
2 (D1

HS1D2) are de-
fined from the solvent effective hard sphere diameter~in
units of the LJ parameters)D1

HS . For the definition of the
latter we tookuLJ(D1

HS);1.5kBT. The reduced solvent den
sity is r* [rs3. e* [e/kBT is the reduced strength of the L
potential.e12* [e12/(D12kBT) is the reduced strength of th
solvent-solute Yukawa potential andz12 its inverse range
~units of 1/s).

These models ofu11 and u12 should be appropriate to
investigate the general trends associated with of a non-h
sphere solvent interacting with a solute with variable sol
philicity, as this occurs with sterically stabilized silica pa
ticles in organic solvent or in some reverse micellar syste
We finally mention that the direct interactionu22 between the
solutes must be added toFe f f in order to study the thermo
dynamics of the effective fluid. For simplicity,u22 was taken
here as a pure hard core interaction. As emphasized in R
@65,68# a less brutal modeling of this direct interaction mig
be necessary for investigating the actual total effective in
action in real colloids.
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III. RESULTS AND DISCUSSION

A. Test of the RHNC free energy of the effective fluid

As noted in the Introduction, the first point that needs
be checked by simulation is the quality of the RHNC pha
diagram. In the case ofFe f f it is relatively long ranged and
has an oscillatory behavior near contact. The fluid-fluid li
is indeed very sensitive to the details of the interaction
tential ~the fluid-solid one somewhat less so!. In the case of
the depletion potential~pure hard spheres! the construction
of the RHNC free energy with theb0(r ) of Labik et al. @58#
has already been compared@41# with the simulation data of
Dijkstra et al. @3#. As with more standard potentials, goo
agreement was found for the depletion one~i.e., structured
and short ranged!. This method was, however, not tested
the case of interactions that combine both features.
simulations were done forr* 50.85 andr* 50.87 and used
bFHNC

e f f . At this stage, the particular closure used is irr
evant since the purpose is to check the phase diagram a
ciated with a givenFe f f of whatever origin. The parameter
of the model~corresponding to one of those studied in R
@41#! are given in the figure caption and simulation deta
are given in the Appendix.

Figure 1 shows the free energies for both solvent de
ties. The agreement deteriorates somehow at high so
packing fractionsh2, but the RHNC remains accurat
enough for computing the free energy for this kind of pote
tial. As seen in the inset, the positions of the F-F line o
tained by simulation and by the RHNC are practically t
same. This test validates the RHNC route for computing
phase diagram for a given effective potential.

The second verification is relative to the quality of th
RHNC/FMF effective potential resulting from a model of th
actual interactionsui j (r ). The good accuracy of the RHNC
FMF observed in our previous work@46# is confirmed here

FIG. 1. Reduced free energy densityf * [h2F/N2kBT of the
effective fluid versus solute packing fractionh2. Size ratio, R510;
solvent effective HS diameter,D1

HS50.94s; reduced LJ strength
e* 50.5; reduced Yukawa strength,e12* 58; and inverse range,z12

52.5/s. Black circles, MC (r* 50.85); crosses, MC (r* 50.87).
Lines: corresponding RHNC results. The inset shows the F-F co
istence data: black circles, MC; squares, RHNC@41# ~the line is
drawn to guide the eyes!.
4-5
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by new data forR510 presented in the last section of th
paper~although the present study is not concerned with t
situation; see, however, the case of a solvophobic macro
ticle for which the agreement with simulation was on
qualitative@46#!.

The two steps of the effective fluid approach are n
validated. We can thus explore the changes induced by m
els of ui j (r ) with attractive contributions.

B. Relative stability of the fluid-fluid and fluid-solid
transitions

To illustrate specific behavior resulting from attracti
contributions to the potentialsui j (r ), we computed the phas
diagram for two different models referred to asA andB ~the
associated parameters are given in Table I!. These models
differ by the strength of the solvent-solvent LJ interacti
(e* 50.55 forA ande* 50.60 forB). For both models, the
phase diagrams@Figs. 2~a! and 2~b!# were computed by us
ing FRHNC

e f f . For modelB, the result obtained withFHNC
e f f that

is much simpler to compute is also shown. We simply n
here that HNC is correct at the qualitative level but the
existence lines are shifted at lower solvent packing fracti
a consequence of the overestimation of the attractive co
bution in FHNC

e f f .
While the two models are quite similar, the resultin

phase behavior is significantly different. For modelB, the
fluid-fluid ~F-F! transition becomes stable with respect to t
fluid-solid ~F-S! one for 0.70<r* <0.72. For modelA, the
F-F coexistence line is always within the F-S one, that is
fluid-fluid transition is metastable. In fact, an increase ofe*
shifts both lines to lowerr* but the critical point for the F-F
transition being more shifted, the relative stability of the tw
lines is inverted. This confirms the conjecture made in
previous work fromFHNC

e f f @41#. To gain a better understand
ing of these features, we show in Figs. 3~a! and 3~b! the
corresponding effective potentialsFRHNC

e f f at selected values
of r* .

In both cases,Fe f f exhibits a relatively long range attrac
tive tail (;0.5D2 after contact!. This observation is impor-
tant since the extent of the liquid domain is known to
crease with the range of the attraction~see, for example
Refs. @60,69,70#!. On the other hand,Fe f f shows an attrac-
tive primary well at contact separated from the second
well at r;D21D1

HS by a repulsive barrier, as with the H
depletion potential. Although the link between the interact

TABLE I. Parameters of modelsA andB: R5D2 /D1
HS , solute/

solvent diameter ratio;e* [e/kBT, reduced strength of the solven
solvent LJ potential.D1

HS : solvent effective hard sphere diameter
units of the LJ parameters. e12* [e12/(D12kBT): reduced strength
of the solvent-solute Yukawa potential.z12: inverse range of the
Yukawa potential in units of 1/s. The solute-solvent hard core d
ameter isD125

1
2 (D1

HS1D2).

R e* D1
HS e12* z12

A 10 0.55 0.94 8 2.5
B 10 0.60 0.94 8 2.5
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potential and the phase diagram is not trivial because of
competition between enthalpy and entropy, the overall asp
of the phase diagram may tentatively be explained by
competing effects of these two features ofFe f f. When r*
increases, the short range structure ofFe f f due to the solvent
layering near the surface of the solutes becomes more
nounced~the attractive well at contact being deeper and
repulsive barrier higher!. Since the ‘‘depletion’’ effects are
however, lower than with pure hard spheres with the sa
values ofR and r* , one expects the F-S transition to b
delayed to higherr* both for A and B. The different posi-
tions of the F-S lines for the two models can be attributed
the repulsive barrier forr dD21D1

HS that prevents the sol
utes from making contact. This is higher in caseA
(;4.8kBT for r* 50.8) than in caseB (3kBT for r*
50.74), the global attraction being the same at these de
ties. As a result the F-S transition of modelA is delayed to a
higher solvent packing fraction than in caseB. At the same
time, one observes that the depth of the wells at long ra
increases more than the corresponding repulsive barriers

FIG. 2. ~a! Phase diagram forFRHNC
e f f in the (r* 2h2) plane for

modelA. F-F denotes the metastable fluid-fluid domain.F denotes
the stable fluid phase.S denotes the stable solid phase. Do
RHNC; squares, VPT.r* is the solvent density in the reservoir an
h2 the solute packing fraction.~b! Phase diagrams in the (r*
2h2) plane for modelB. Symbols: same as~a!. Solid lines,
FRHNC

e f f ; dashed lines,FHNC
e f f .
4-6
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a result,Fe f f becomes on the whole more attractive at lo
range in both models. However, higher values ofr* are
needed in caseA to obtain the same global attraction than
caseB @see Figs. 3~a!, 3~b!#. As a result, the F-F transition
occurs also at higherr* but the shift of the F-S and F-F line
is not the same forA andB. The reason is thatFB

e f f cannot
be deduced fromFA

e f f by a mere increase ofr* . Indeed, the
structure which is superimposed on the overall attractive
and that is due to the layering of the solvent particles
tween the solutes is more readily smoothed by an increas
e* in caseB ~see the discussion of Fig. 8 in Ref.@34#!. As a
consequence, the widening of the region whereFB

e f f is at-
tractive is eventually strong enough to favor the liquid pha
as for ordinary~structureless! potentials. The comparison o
the phase boundaries@Fig. 2~b!# obtained withFRHNC

e f f and
FHNC

e f f gives weight to this scenario since the two main fe
tures of the effective interaction are magnified by the HN
closure@Fig. 3~b!#.

Because of the importance of the long range behavio
the effective interaction, we discuss below in more detail
role of the solvent self-attraction.

FIG. 3. ~a! Reduced effective pair potentialbFRHNC
e f f for model

A. Dotted line,r* 50.7; dashes,r* 50.76; solid line,r* 50.8. ~b!
Reduced effective pair potentialbFRHNC

e f f for modelB. Dotted line,
r* 50.65; dashes,r* 50.71; solid line,r* 50.74. Inset: compari-
son with HNC forr* 50.71: solid line,FRHNC

e f f ; dotted line,FHNC
e f f .
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C. Effect of solvent-solvent long range correlations

In the preceding section we have shown that the lo
range attractive tail of the effective potential is quite sen
tive to the parametere* of the solvent-solvent LJ potentia
A change ine* affects both the depth of the well and th
attraction range. Long range correlations between the sol
particles are suspected to favor their removal from the in
region between the solutes due to a stronger attraction by
bulk @34# ~see also, for example, the discussion of Jamniket
al. @26# of the role of the solvent stickiness!. Because of the
ensuing smoothing of the oscillations inFe f f, it is useful to
study more specifically the influence of the range of t
solvent-solvent interaction. To this end, we consider here
truncated and shifted LJ potential, at a cutoff distancer cut :

u11~r !5H uLJ~r !2uLJ~r cut!, r<r cut

0, r .r cut .

The strength of the LJ potential is nowe* 50.7 and for sim-
plicity D1

HS was taken equal tos instead of 0.94s in the
preceding section. The corresponding size ratio isR510,
viz., D2510s. The solvent packing fraction isr* 50.6 and
the Yukawa solute-solvent parameters were fixed ate12* 59
and z1252.5/s. The correspondingFRHNC

e f f was computed
for r cut52.5s, 4s, and 40.96s. As seen in Fig. 4, the at
tractive tail ofFe f f is rather sensitive to the range ofu11(r ).
For r cut52.5s andr cut54s the effective force between two
solute particles in the solvent bath was also determined
Monte Carlo simulation@Fig. 4~b!#. As in our previous work,
we used the same method~details are given in the Appendix!
as that used by Dickmanet al. @71# for hard spheres. The
good agreement observed for both values ofr cut @Fig. 4~a!#
confirms that this spectacular effect is real and not an arti
of an approximate closure of the integral equations. F
r cut52.5s, the effective interaction is repulsive at long di
tances, whereas it becomes attractive whenr cut is increased
to 4s. This gives some support to the physical interpretat
based on the attraction from the bulk of the interstitial s
vent that was suggested above. It must be stressed here
having at our disposal an accurate theoretical method is
essential point for computing the phase diagram. Indeed,
length of simulations becomes really prohibitive when t
range of the solvent-solvent interaction increases so they
be used only for validation purposes.

Since the effective potential is essentially determined
the solvent-solvent and solute-solvent correlations@see Eqs.
~7!–~13! and the discussion of the magnitude ofb22 in Ref.
@46##, we comparedg11(r ) and g12(r ) obtained by simula-
tion and by IE. The good agreement between simulation
IE confirms the accuracy of the FMF bridge functions. Wh
g11(r ) is barely affected by the cutoff, the contact value
g12(r ) is sensitive tor cut ~Fig. 5!. It decreases when th
range of the LJ potential increases, a result consistent w
the extrapolation to finite size ratios of the contact va
theorem@34,65#. As a result, weaker ‘‘depletion’’ effects ma
be expected because fewer interstitial solvent particles
involved, consistent with the observations made in the p
4-7
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ceding section. The subtle long range behavior ofFe f f is,
however, more difficult to guess from these tiny structu
changes@46#. This is confirmed by a comparison with th
Fe f f computed from the superposition approximation@see
Eq. ~14!# which involves only the solvent distributiong12

about an isolated solute. Figure 4 shows that this met
fails to predict good trends at long distance,Fsup

e f f being in-
sensitive to changes ofr cut . This shows thatFe f f is deter-
mined by the fine structure ofg11 andg12 which are coupled
by the OZE. This coupling with the bulk fluid seems to
amplified when the range of the solvent-solvent interactio
the biggest@65#. Arguments of a similar nature have bee
invoked in Ref. @45# to analyze some combinations o
solvent-solvent and solute-solvent attractions.

FIG. 4. ~a! Reduced effective pair potentialbFe f f for R510
andr* 50.6 and different cutoff distances of the solvent-solvent
potential. Solid lines from top to bottom: RHNC/FMF withr cut

52.5, r cut54 and no cutoff. The dashed line shows the result
tained with g12

RHNC ~see Fig. 5! in Eq. ~14! for r cut54. MC result
from the integration of the effective force@Fig. 4~b!# ~with exten-
sion by bFRHNC

e f f beyond 12.5s): empty circles,r cut52.5; filled
circles, r cut54. ~b! Reduced effective force forR510 and r*
50.6 and different values ofr cut . Empty circles~MC! and dashed
line (FRHNC

e f f ), r cut52.5; filled circles ~MC! and solid line
(FRHNC

e f f ), r cut54.
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IV. CONCLUSION

This study has shown that the complexity of the pha
behavior of real colloidal mixtures can be restored by tak
into account the specificity via models of the interactio
between components incorporating some aspects of rea
teractions, namely, a short range repulsion and an attrac
tail. The most immediate consequence of this refined mo
ing is that the F-F phase can be stable even at high pac
fraction of solvent particles. This can be explained by a co
petition between entropic and enthalpic contributions to
effective potential which produces two features of the eff
tive potential.The first one is related to the steric effects a
pure hard sphere systems. The second and more specific
results from the competition between the solute-solvent
traction which tends to favor the solvation of the solutes a
the self-attraction of the solvent which makes the effect
interaction between solutes more attractive at long range
comparison with simulation, it was also confirmed that s
nificant changes of the effective potential might result fro
seemingly benign alteration of the parameters of the inte
tions. Besides making questionable the relevance of the h
sphere model to the study of many real colloidal susp
sions, especially when it concerns the solvent-solvent
solute-solvent interactions, this state of affairs shows t
further investigations are clearly required. This observed s
sitivity emphasizes first the care that should be taken in
interpretation of some experimental observations. It a
calls for the development of more accurate theoretical me
ods. On the other hand, a refined description of the inte
tions might be required in order to consider—for example
actually nonspherical solvent particles. Finally, theoreti
progress in these directions would eventually enable devis
practical methods for controlling the stability of the vario
phases.
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-

FIG. 5. Solvent-solute pair distribution functiong12(r /s) for
R510 andr* 50.6 vs reduced distancer /s. Same caption as Fig
4~b!.
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APPENDIX: SIMULATION DETAILS

1. Computing the free energy

Since the free energy cannot be obtained directly in
~NVT! Monte Carlo simulation, we employed the sam
method as in Ref.@3#. It uses thermodynamic integration v
a charging parameterl defined by

fl5f01lfe f f

l50 corresponds to the HS reference potential andl51 to
the full effective potential. The free energy of the effecti
fluid reads thus

F5F01E
0

1K (
i , j

Fe f f~r i j !L
(N2 ,V,Fl)

dl. ~A1!

For the free energyF0 of the HS system, we took th
Carnahan-Starling expression@71#. ^( i , jF

e f f(r i j )& (N2 ,V,Fl)

is the canonical average of( i , jF
e f f(r i j ) for N2 solutes in-

teracting withFl ~this method is also useful to extrapola
the RHNC free energy in the nonconvergence domain!.

We estimated that seven values ofl per solute packing
fractionh2 were sufficient to perform the numerical integr
tion. Because of the relatively long range of the effect
interaction, we used 256 particules forh2.0.2 and 108 par-
ticles for h2,0.2. To reduce the simulation time, a paralle
ized algorithm with seven simultaneous simulations w
used to obtain the free energy for a givenh2. About 15
values ofh2 were next used to draw the common tange
@that is, 105~NVT! simulations per value ofr* ].

2. Computing the effective potential

Fe f f was obtained by integrating the force between t
solute particles at a distanceD in a bath of solvent as pro
posed by Dickmanet al. @72#. The effective force is given by

Fz~D !5E ¹W u12~ urW2RW1u!kWdN1 , ~A2!
K,

s

06140
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wherekW is a unit vector along the line connecting the cent
of the solute particles. For solute-solvent interaction with
hard core and an attractive tail, the force reads

Fz~D !5K (
i

N1

cosuL
contact

1K (
i

N1 ]u12~u!

]u
cosuL ,

~A3!

whereu is the angle (kW , rW2RW 1). The first term in Eq.~A3!
relative to the HS contribution is computed as the therm
average of the sum of cosu over the solvent particles in
sufficiently small shells near contact~here the thickness o
the shell is 0.02s). The actual contact value is obtained b
extrapolation as in Ref.@72#. The effective force was deter
mined up toD512.5s, a separation at which the oscillation
are damped enough and about ten points~NVT simulations!
were used to integrate the force~beyond 12.5sFRHNC

e f f was
used!. Due to the range of the solvent-solvent interaction a
that of the resulting effective force, very large boxes we
considered. For the two models the box size was 32318
318s3 and the number of small particles corresponding
r* 50.6 wasN155633. The value ofr* was checked by
measuring the average density at the edges of the box.
comparison, Dickmanet al. used a box size 22316316s3

for hard spheres with samer* @72#. A standard neighbor list
was employed@73#. Finally for a given separation betwee
the solutes, the calculation of the force forr cut54 took three
days for 200 000 production cycles and an equivalent ph
of equilibration on our workstations. Note that the efficien
of the algorithm, namely, that relative to the neighbor li
decreases dramatically when the solvent-solvent interac
range increases@73#. This renders impractical simulation
beyondr cut54.

The solvent-solute pdfg12 was obtained by using a stan
dard ~NVT! simulation of the solvent in the field of the bi
Yukawa particle fixed at the center of a cubic box with si
(18s)3.
ys.
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