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Attractive forces in sterically stabilized colloidal suspensions: From the effective potential
to the phase diagram
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The potential of mean force for macroparticles at infinite dilution is computed for several models of solvent-
solvent and solvent-macroparticle interactions by using the reference hypernetted(RHAIC) integral
equations with Rosenfeld’s density functional theory bridge functions. The phase diagram of the associated
effective fluid is obtained from the RHNC free energy for the fluid branch and the perturbation theory for the
solid one. The computation of the effective potential and of the fluid branch is tested by comparison with
Monte Carlo simulation. The important modifications with respect to the pure hard spheres that were previ-
ously reported are confirmed. The possibility of inverting the relative stability of the fluid-fluid and the
fluid-solid transitions by appropriate combination of the interaction parameters is shown. The importance of a
fine description of the interactions is illustrated in the example of the role of the range of the solvent-solvent
interaction potential.
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I. INTRODUCTION R®), second because the solute particles are artificially “fro-
zen” by the presence of the solvent, with a resulting poor
Understanding the phase behavior of colloidal suspenstatistics. Many efforts have been made to tackle these prob-
sions and predicting it from a microscopic approach is still ems. From the point of view of simulations, specialized al-
great challenge in the physics of liquids. Indeed, these sygorithms have been developgg-10 that made it possible
tems exhibit particular features that distinguish them fromto go beyond the early results of Jacksairal. [11]. On the
simple fluids or ordinary mixtures and make their theoreticalother hand, various improvements of the integral equations
study more difficult{1,2]. To take the example of sterically [12-195 (IE) and DFT (see, for example, Ref$6,7]) ap-

stabilized colloids suspended in an ordinary solvent—the ad®roaches have been proposed. In this way, Biben and Hansen
g I[16] detected a phase instability in sufficiently asymmetric

S mixture with the Ballonest al. [13] and the Rogers and

oung[12] IE, a result substantiated by new simulation data
obtained by the configuration bias Monte Carlo meth®Hd
Even though the underlying mechanistine depletion effegt

unusual characteristic is the big difference in size betwee
solvent and solute particlegbereafter, small and large par-
ticles will be referred to as components 1 andThis purely

geometrical asymmetry being a generic property of coII0|dsWas known for quite a long timésee the work of Asakura

its consequences have been investigated in nhumerous theé)ﬁd Oosawd17], and that of Vrij[18]), this was a surprising
retical studies based on the asymmetric binary hard spheigg ¢ since it contradicted the conclusion drawn by Lebow-
(HS) mixture model. The sole parameter of this model is they, 5nq Rowlinsor{ 19] from the Percus- YevickPY) closure
diameter ratioR=D,/D;>1 and the relevant thermody- [20] which predicts a homogeneous HS mixture at all pack-
namic variables are the packing fractionsy; ing fractions and size ratios. This phase transition driven by
=(m/6)p;D} (p; is the number density of componei}t.  purely entropic effects became thus a source of great interest
However, the behavior of this model f&t>1 came to be that finally yielded a well established phase diagram, first
understood on the whole only recentlgee, for example, computed by Dijkstrat al.[3] (see references therein for the
Refs.[3,4] and references thergirbecause of several tech- related work. The main conclusion is that a sufficiently
nical difficulties. On one hand, the accuracy of standarchsymmetric hard sphere mixture shows both a fluid-solid
methods based on the Ornstein Zernike equati@¥&E) is  (F-S) and a fluid-fluid(F-F) transition but the latter is always
uncertain since their sensitivity to approximate closures bemetastable.
comes more critical aR increase$5]. This prompted the use These results relative to the depletion effect are of course
of an alternative route based on the density functional theorgf fundamental value but the remaining question is the rel-
(DFT) (see Refs[6,7]). On the other hand, computer simu- evance of the underlying model to real colloids. Some col-
lations that might validate the theoretical methods areoids might indeed behave as hard spheres but the associated
equally problematic: first because the numbyrof small  universal phase diagram is not the generic one for a quite
particles required to achieve comparable packing fractiontarge number of colloidal suspensions. Indeed, if all actual
rapidly becomes prohibitivéthe ratioN;/N, increases as mixtures were hard-sphere-like, it would be impossible to
observe for example a dense fluid of solute particles sus-
pended in a liquid solventsf;~0.4). This is obviously dif-

* Author to whom correspondence should be addressed. email aderent from the behavior of many real colloids that often

dress: malherbe@univ-paris12.fr show stable fluid phases that are rich in solute partideX.
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Also, temperature often plays a major rde striking ex-  which different methods for computing®'’ were compared.
ample is the lower consolute point observed in some reversirom this study completed by the recent data presented here,
micellar system$21]) in contrast with the case of pure hard it appears that the RHNC closure of the OZE with bridge
spheres for which it is not a relevant thermodynamic vari-functionsB;; computed from Rosenfeld’s Fundamental Mea-
able. Furthermore, experiments on real colloids, such asure Functional[FMF) is the most reliable method for ob-
coated silica particles in organic solvents, show that the eftaining the effective potentidthis method will be referred to
fective interaction between the solutes may be turned frons the RHNC/FMF. A similar discussion has been made in
attractive to repulsive by changing the nature of the solvenRef. [45] for @' computed with the DFT, but the simula-
(see, for e.g., Ref22]), even when the solvent particles are tion data were for lower size ratio and solvent density than
of similar size. The composition of the surface layer of re-those we used to test the RHNC/FMF method.

verse micelles is also known to have a strong impact on their In order to compute the phase diagram, the mixture was
phase behaviofsee, e.g., Ref23]). treated in these studies at the effective one-component fluid

All these features being foreign to the HS model, onelevel with assumed pairwise additive interactions. In this ap-
needs to go further in the modeling by taking into accountProach(MacMillan-Mayer theory{47]), the focus is on the
specific interactions between the components. The early afluid of solute particles, the influence of the solvent being
tempts to introduce attractive forces based on Baxter’s stickjncorporated into the effective pair interactidrf'" which is
hard sphere moddR4] (see, e.g., Ref§25-30 and refer- computed given some model for the interaction potentigls
ences thereingave useful indications, in particular on the between component&®"is used in a second step to obtain
crucial role played by heteroadhesiofsolvation forces  the phase diagram of the effective fluid by methods appro-
This model, however, ignores the range of the interactiorpriate to one-component fluids. Among these, the reference
potentialsu;; between components and more realistic modeldypernetted chaifRHNC) [48] integral equation used in this
such as the Yukawa or the Lennard-Joried) potentials Work as in our previous ongg1,49 is known to be one of
were considered, first at the level of the potential of mearthe most accurate. For the solid phase, we used the perturba-
force at infinite dilutiond®e'" (for earlier work, see, for ex- tion theory[50] which is accurate enough for interactions
ample,[31,32). Attractive forces were more recently consid- having the characteristics df*'" (see Ref[49] for a recent
ered in Refs[33,34 and similar studies of charged systemsdiscussion of this point Besides being computationally
can be found for example in Refi35—37. These studies More convenient than a direct study of the true mixture, this
have shown that this improved description of the interactiongffective fluid approach is the only one which can be tested
u;; can have a strong impact on the potential of mean forcedt each step by simulation with present algorithms.
The same observation can be made from the nonadditive HSince—as discussed below—the two steps for computing the
model[38-40. phase diagram do indeed test favorably by simulation, we

These modifications are of course expected to exert aRow have a robust theoretical scheme for studying complex
equally strong influence on the phase behavior. Howevefnodels of colloidal suspensions. It permits the analysis of
with the exceptions of a previous work from our gra4i] the connection between the phase diagram and the micro-
and that of Louiset al. [38] on the phase diagram of the scopic parameters of the system. In this framework, we will
nonadditive HS mixtures, all other investigations of the rolepresent an example of a combination of interactiopgthat
of attractive forces were limited to the changes they inducdeads to a stable dense fluid phase of solute particles in a
on the potential of mean force or on structural quantitses dense solvent. This possibility remedies the most undesirable
also Ref[42] for a discussion of nonadditive HSThe main  feature of the HS phase diagram when dealing with suspen-
goal of the present work is thus to discuss in more detail théions in which significant attractive forces are expected.
influence of attractive forces on the phase diagram. In par- To this end, this paper is organized as follows. We first
ticular, we will analyze the predictio1] that the relative recall the theoretical background for computing the phase
position of the F-F and F-S coexistence lines can even béiagram for a given microscopic model. Then we confirm by
inverted when compared to hard spheres. On the other hangimulation that the RHNC integral equation is accurate
the theoretical determinations @¢'" always involve ap- enough for studying the F-F transition. In the following part,
proximations. It is thus important to test them by simulationwe study the RHNC phase diagram of two different models
in order to gain confidence in their predictions on the role ofand the relation between the effective interaction and the
the attractions. From the simulation point of view, the situa-Phase behavior. In particular, we try to clarify the role of the
tion is even more problematic than with pure HS systemstange of the solvent-solvent attraction by studying the effec-
Indeed, in addition to the difficulties mentioned above in thetive potential by simulation and the integral equation
pure HS case, one needs to monitor the difference in energjethod.
between successive configurations that might involve several
thousand small particles. Besides our previous re$diEs
(size ratio R=5) and those presented in this papd® (
=10), we are only aware of the simulation data of Shinto As stressed in the Introduction, the study will be con-
et al. [44] (R=10) and the recent work of Louist al.[45]  ducted here at the effective one-component fluid l¢4&]
(R=5). This progressive accumulation of simulation databecause of the lack of validated theoretical methods for a
will help validate the various theoretical routes to obtaindirect treatment of the mixture. The binary mixture is re-
®°ff This was already started in our recent wdd6é] in duced to an effective one-component fluid of solute particles

Il. THE EFFECTIVE FLUID APPROACH
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and the presence of the solvent is replaced by an effectivgiven choice of the solvent interaction parameters might ac-
pair interaction computed at infinite dilution of the solute. tually correspond either to a supercritical solvent or to a tem-
This reduction is detailed for example in Reff8,51). Once  perature outside the coexistence domain in tie- p*)

the effective pair interactionP®’’ is known, the phase plane.

boundaries of the effective fluid are obtained from the Helm-

holtz free energy by the common tangent construction. 1. The fluid branch
The fluid branch of the effective fluid is obtained by com-
A. The pair potential approximation puting the RHNC free energy. The well-known RHNC inte-

gral equation is detailed in Reff48] to which we refer for

The potential of mean forcé(RN2; ;) for N, solute licit . oF It | ts the Omstei
particles immersed in a pure solvent at fixed chemical poten@Xp ICIt €Xpressions Of rync. 1t SUDPIEMENTS the Lrnstein-

tial w, is defined from the solute distribution function Zerni_ke equaﬂon[SO] for the to.tal and direct correlation
pN2(RN2; 111:V;T) in the semigrand ensembld7]. Its for- functionsh(r)=g(r) =1 andc(r):

mal expression involves a sum over all numbiggsof small

particles of the integral over their coordinate® of the h(l’)—C(I’)=pf dr'h(r")c(|r=r'|) 2
Boltzmann factor exXp—B;-juqi(rij) + =i suri,Ry) 1,

whereuq; and u,, are the solvent-solvent and the solute- by the closure

solvent interaction potentials aggE= 1/kgT. This expression

is, however, so intractable that the pairwise additivity as- g(r)=exd — ¢(r)/kgT+h(r)—c(r)—bo(r)], (3
sumption is usually invoked to permit the reduction of the

binary mixture to an effective one-component fluid. In thiswhere the interaction potentiap(r) corresponds here to
approximation, one considers thi&-body potential as the ¢’ defined aboveb,(r) is the bridge function of a refer-
sum of two-body effective interactions ence system, here a system of hard spheres, whose diameter

N, oys is determined by the optimization conditi¢B4]

<I>(RN2;M>~|E<J PR ,Ry; 1y). (1)

o) _ (4)
F?O'HS

f dr[g(r)—go(r)]

The exactP (RN2; u,) is nonadditive because the solvent dis- ) ) _

tribution about a given set of solute particles cannot be exJhe RHNC has been applied to a variety of state independent
pressed solely in terms of its distributipi(r;R, ,R;) about interactions and has been shown to be very accurate when
pairs (,J). Even if arguments might be invoked to justify compared with simulatiofsee, for example, Ref§5,55,5§
this, analytical studies of correlations at the three particle@nd references therdirin this work, we used the parametri-
level (see, e.g., Ref52] for the Lennard-Jones fluicshow  Zation ofby(r) of Malijesvsky and Labi{57] and used the
that the presence of a third particle in the vicinity of a pair@lgorithm of Labiket al. [58] for solving Egs.(2)—(4). This
changes the distribution of the remaining ones about the paif/osure will be tested in our particular case of an effective
In a mixture, this effect is expected to increase with as potential exhibiting both long range talls_as the LJ model and
confirmed by our previous simulation of the HS moff&s]. complex structures as depletlo_n poter_mals. For the range _of
Many-body effects were indeed detected even at high Siz@ermodyna_m!c variables and interaction parameters Cons_ld-
ratio (R=20). These were expected to slightly shift the co-€red here, it is almost as accurate as that computed using
existence lines towards higher values of the solvent packinffosenfeld’s DFT59]. But since it allows a much faster nu-
fraction in the reservoir. For more general models, howeverMerical solution of Eqs2)—(4) it was preferred in the com-

this point needs to be clarified and remains the only unconPutation of the isg* free energies. In thep(,p,) domain
trolled approximation of this treatment. where numerical convergence is not possible, we followed

Within this assumption of pairwise additivity of the strategy detailed in Re#1]. The behavior ofb®' being
®(RV2; u,), the effective fluid of solute particles interacting €SS extreme when attractive forces are considered, the extent
via ®¢'" is then studied by standard methods for one-of the nonconvergence domain is in most cases much smaller

component fluids. than with pure HS.

2. The solid branch

To determine the F-S coexistence line the solid branch of

~ Inthe semigrand ensemble, the solvent is characterized Bye free energf s was obtained from a variational perturba-
its chemical potential or at fixed temperature, by the solvention theory(VPT):

density in the reservoiit will be convenient to work with

the reduced densitp* =p,(D''%)%, whereD''® is defined Fs(p2)=Fus(p2) H{Peri— Prshus. (5)
below). In the construction of the fluid and solid branches of

the isop* free energies for the solute particles, it is assumedrhe technical details of our calculationsfeg were identical
that the solvent remains in a single phégs means that we to those in the study of the Yukawa potential by Hasegawa
are not considering the full phase diagram of the binary mix{60] and in Refs[41,49. The accuracy of this scheme has

ture). Therefore, when we explore different valuesgdf a  been discussed in detail in R¢49] where it was shown that

B. Phase boundaries of the effective fluid
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at the densitiep, of the solid state, the perturbation treat- closure using thé;; obtained from Rosenfeld’s DFT. In the
ment of a short range interaction @ is sufficiently ac- RHNC (see, e.g., Ref§14] and[31] for macroparticles in a
curate. solven} one has

C. Potential of mean force at infinite dilution ,Bq’ngch(riPl): — ¥ 1) +boo(r), (13

1. General expression ofeff _ ) ) o
where b,,(r) is the bridge function for solutes at infinite

H ffrp. H
The potential of mean forc®®''(r; ;) between a pair of  gijytion. We note here that the evaluation from the FMF of
solute particles separated by a distan@@mersed in a pure o by(r) in the test particle limit, by[{p;(r);r}]

solvent at chemical potentigt; can be obtained from the _ ., pds/, .\ HS/ ~ .
distribution function of solute particles at infinite dilution _ﬂ(ﬂiiex[{p'g“(r)’rl}] _“ivex({f’_'})”g“(”’ requires the
excess chemical potential functlona['ex and the auxiliary

U1 p2—0,t1) =X — B(Usy(1) + D% (r;19)], (6)  function %i(r):Ejpjfdr/ci(jz)’Hs({Pi}?|r—r’|)htj(r')a
where c{?"'S is the Percus Yevick HS direct correlation
U, being the direct interaction between the pair. In practicefunction andh,; the test particlg- particle total correlation
at fixed T, the solvent bulk densitp* is used as the inde- function. We refer the reader to Rosenfeld’s paf&d] for
pendent variable as mentioned above. the expression of!'s, and to[46] for implementation details
in our present casesee, also, Ref.61] for HS near a hard
wall). Besides the fact that the numerical evaluation of the
In the IE route tod®f, the solute pair distribution func- bjj is more involved than when one uses parametrized forms,
tion (pdf) g,, is computed by taking the limjp,—0 of the  the main difference is that an extra cycle is required by the
OZE [50]: convergence of the bridge functignote that its expression
involves both the reference system and the correlation func-
tions hy; for the actual interactionsi;;). This method has

2. The integral equations route

7’ij(r):2k pic | drici(rhg(lr=r"), (7) " been successfully applied by Kai al. [62] to various mix-
tures but they did not consider highly asymmetric ones.
where y;;=h;; —c;; is the series functioriwith h;; andc;; This method share§ with some DFT calculati¢4,45
the total and direct correlation functiongor a binary mix- ~ the use of Rosenfeld's functional, but in a quite different
DFT approach is detailed in R€f7]. In a strict DFT calcu-
0ij =eXIO[—BUij + i — bij}v (8) lation, one uses the equation for the profile that results from

the minimization of a given grand potential function&B],
where bj; is the bridge function. In the limip,—0, the  while in the IE route, this equation for the profile is recast,
equation for the solvent is uncoupled from the remainingthrough the test particle consistency in the form of a closure
ones: of the OZE with an imposed bridge functiongd9]. This

may have quite different consequences when solvent-solvent

, , , attractions are involved. While the DFT calculation uses di-
711(f)=P1f dr'haa(r")eq((r—r'}). © rectly the HS functional in the equation for the profjlen-
less some additional prescription is made for the attractive
The resultingc,; is fed into the equation part[63]], the only assumption made in the RHNC/FMF clo-

sure is that the HS bridge function@ot function: recall that
this functional depends on the correlation functions for the
m(f)=Plf dr'har)ea(r=r']) 10 actual interactionsy;;) is universal. Since these interactions
appear directly in the closures of the OZE, H§), the
to obtainh,, andc4,, the final input in the equation giving RHNC/FMF can work even for a non-hard-sphere solvent. In
Voo some “critical” cases involving very fine details of the vari-
ous correlations, it needs, however, to be impropMl. On
, , , the whole, the treatment of solvent-solvent attractive forces
sz(f)zplf dr'hyp(r')caol[r—r'}). (1D jnvolves thus a much weaker assumption than the pure ne-
glect of the solvent-solvent attractive contributions to the
In this paper we will consider two different closures. Thefree energy functional. In any case, improvements of the

HNC closure, in which one takds; =0 gives functional for treating the attractive contributions can readily
be incorporated into the IE approach through the correspond-
BOEN (rip1)=—yaulr). (120 ing bridge functional.

Finally, we mention here that under conditions where the
This closure is easy to implement but is not accurate enougldisturbance of the distribution of the solvent around an iso-
especially for non-hard-core interactiof46]. It was em- lated solute, induced by an approaching second solute, is
ployed here only for the comparison with the results obtaineeéxpected to be weakow p* and no long range solute-
from the more sophisticated and very accurate RHNC/FMFsolvent interactiof) @€' can be computed more simply by
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integrating the mean force Ff(R ) =/drVu, r 0
—Ry)pi(r;R;,R,) and replacing the actual solvent density
about a pair of solutes aR(,R,) by

-0.5
p!(r;R1,R2) = p101|r — Re))ga|r = Ry|) (14 "

(superposition approximatiofi64]) where gq,(r) is the 4
solvent-isolated solute pdf.

D. Models with attractions 15

Since the purpose of the present work is to discuss the 0 0.1 0.2 0.3 0.4 0.5
microscopic parameters that exert the most influence on the
phase behavior rather than to investigate a specific system _
(see, for example, the study by similar techniques of theﬁFK.;' 1ﬂ .EEdUCEd frele energky defnsity_ 72FNoKg T (;Ltl':f
effective interaction in reverse micellg85], the behavior of effective fluid versus solute packing fractiop. Size ratio, .

vated HCl66 i lecular d _ solvent effective HS diameteB''=0.94s; reduced LJ strength,
passivated nanoparticld$6] or the molecular dynamics €*=0.5; reduced Yukawa strengtk},=8; and inverse range;,

study of Shintoet al. [67] of colloidal particles in alcohol- = 2.5/r. Black circles, MC p* =0.85); crosses, MCg* =0.87).
water mixtures we consider here, as in our previous works,  jyes: corresponding RHNC results. The inset shows the F-F coex-
two simple models of spherically symmetric interactions,isience data: black circles, MC; squares, RHNG] (the line is
namely the solvent-solvent Lennard-Jon@s)) potential  grawn to guide the eyes

(with parameterg and o):
o 12 o 6
7 -[7)

and the solute-solvent Yukawa potentiglarameterse;,,

Ill. RESULTS AND DISCUSSION

ULJ(I’)=46 (15)

A. Test of the RHNC free energy of the effective fluid

As noted in the Introduction, the first point that needs to
be checked by simulation is the quality of the RHNC phase
diagram. In the case ab®'" it is relatively long ranged and

D1z, andzyy): has an oscillatory behavior near contact. The fluid-fluid line
is indeed very sensitive to the details of the interaction po-
, r<Dy, tential (the fluid-solid one somewhat less)sén the case of
ulz(r):( (16)  the depletion potentialpure hard sphergshe construction
—€18XP{ —Zr =Dy }/r, 1r=Dyy. of the RHNC free energy with thiey(r) of Labik et al.[58]

has already been comparptl] with the simulation data of
. . .. Dijkstra et al. [3]. As with more standard potentials, good
For convenience, the following reduced parameters will b greement was found for the depletion die., structured

. ; HS "
used: the solute/solvent diameter raltli@ I%ZSIDl and the  ,nq short ranged This method was, however, not tested in
solute-solvent hard core diamef@i,=3(D;~+D;) are de-  the case of interactions that combine both features. The
fined from the solvent effective hard sphere diameter  gimuylations were done fgs* =0.85 andp* =0.87 and used

units of the LJ parameter)D}'®. For the definition of the BN .. At this stage, the particular closure used is irrel-

latter we tooku, ;(D}'®)~1.5gT. The reduced solvent den- evant since the purpose is to check the phase diagram asso-
sity isp* =po>. €* =elkgT is the reduced strength of the LJ cjated with a giver®'f of whatever origin. The parameters
potential. €T,= €1,/(D1KgT) is the reduced strength of the of the model(corresponding to one of those studied in Ref.
solvent-solute Yukawa potential argl, its inverse range [41]) are given in the figure caption and simulation details
(units of 1b). are given in the Appendix.

These models ofi;; and u;, should be appropriate to Figure 1 shows the free energies for both solvent densi-
investigate the general trends associated with of a non-hardies. The agreement deteriorates somehow at high solute
sphere solvent interacting with a solute with variable solvopacking fractions 7,, but the RHNC remains accurate
philicity, as this occurs with sterically stabilized silica par- enough for computing the free energy for this kind of poten-
ticles in organic solvent or in some reverse micellar systemgial. As seen in the inset, the positions of the F-F line ob-
We finally mention that the direct interaction, between the tained by simulation and by the RHNC are practically the
solutes must be added ®°'" in order to study the thermo- same. This test validates the RHNC route for computing the
dynamics of the effective fluid. For simplicity,, was taken phase diagram for a given effective potential.
here as a pure hard core interaction. As emphasized in Refs. The second verification is relative to the quality of the
[65,68 a less brutal modeling of this direct interaction might RHNC/FMF effective potential resulting from a model of the
be necessary for investigating the actual total effective interactual interactionsi;;(r). The good accuracy of the RHNC/
action in real colloids. FMF observed in our previous woik6] is confirmed here
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TABLE |. Parameters of models andB: R=D,/D!'®, solute/ 0.82 | ‘ | | | |
solvent diameter ratice* = e/kg T, reduced strength of the solvent-
solvent LJ potentiaIDTS: solvent effective hard sphere diameter in 0.8 7
units of the LJ parameter. €},=¢€,,/(D1kgT): reduced strength
of the solvent-solute Yukawa potential,;,: inverse range of the 0.78 ]
Yukawa potential in units of 3. The solute-solvent hard core di- 0.76 |
ameter isD;,=3(D!S+D,). .
0.74 |
R E* DTS E’]\:Z 212 S
0.72 |
A 10 0.55 0.94 8 2.5
B 10 0.60 0.94 8 2.5 0.7 7
0.68 | | | | | |
by new data forR=10 presented in the last section of this , © 0.1 02 1 03 0.4 05 08
paper(although the present study is not concerned with this 2
situation; see, however, the case of a solvophobic macropat
ticle for which the agreement with simulation was only 076 ' ' '
qualitative[46]).
The two steps of the effective fluid approach are now 0.74 |
validated. We can thus explore the changes induced by mod
. . - 0.72 .
els of uj;(r) with attractive contributions.
. . e _ _ 0.7 i
B. Relative stability of the fluid-fluid and fluid-solid >
transitions 0.68 |
To illustrate specific behavior resulting from attractive :
contributions to the potentialg;(r), we computed the phase 0.66 -
diagram for two different models referred to AsndB (the
associated parameters are given in TableThese models 0.64 ‘ ' ' ' ‘
differ by the strength of the solvent-solvent LJ interaction (b) 0 0.1 0.2 n 0.3 0.4 0.5 0.6
(e*=0.55 forA and €* = 0.60 forB). For both models, the 2
phas%f(fjlagramﬁzlgs. 4a) and 2b)] were Computeefc! by us- FIG. 2. (a) Phase diagram fob&'!\ . in the (p* — 7,) plane for

ing ®giync. For modelB, the result obtained wittb e that  ogelA. F-F denotes the metastable fluid-fluid domaindenotes

is much simpler to compute is also shown. We simply notepe staple fluid phaseS denotes the stable solid phase. Dots,
here that HNC is correct at the qualitative level but the co-RHNC; squares, VPTp* is the solvent density in the reservoir and
existence lines are shifted at lower solvent packing fractiony, the solute packing fraction(b) Phase diagrams in thep{
a consequence of the overestimation of the attractive contri- 5,) plane for modelB. Symbols: same aga). Solid lines,
bution in ®& . e o dashed linesdp&il ..

While the two models are quite similar, the resulting
phase behavior is significantly different. For mod&lthe  potential and the phase diagram is not trivial because of the
fluid-fluid (F-F) transition becomes stable with respect to thecompetition between enthalpy and entropy, the overall aspect
fluid-solid (F-S) one for 0.76<p* <0.72. For model, the  of the phase diagram may tentatively be explained by the
F-F coexistence line is always within the F-S one, that is thexompeting effects of these two features®$'". When p*
fluid-fluid transition is metastable. In fact, an increasedf increases, the short range structurébSf’ due to the solvent
shifts both lines to lowep™* but the critical point for the F-F  |ayering near the surface of the solutes becomes more pro-
transition being more shifted, the relative stability of the twonounced(the attractive well at contact being deeper and the
lines is inverted. This confirms the conjecture made in oufepulsive barrier highgr Since the “depletion” effects are,
previous work fromtbﬁmc [41]. To gain a better understand- however, lower than with pure hard spheres with the same
ing of these features, we show in FiggdaB8and 3b) the values ofR and p*, one expects the F-S transition to be
corresponding effective potentiaB‘,if,jNC at selected values delayed to highep* both for A and B. The different posi-
of p*. tions of the F-S lines for the two models can be attributed to

In both casesp®'" exhibits a relatively long range attrac- the repulsive barrier for<D,+D''® that prevents the sol-
tive tail (~0.5D, after contagt This observation is impor- utes from making contact. This is higher in cage
tant since the extent of the liquid domain is known to in-(~4.8&gT for p*=0.8) than in caseB (3kgT for p*
crease with the range of the attracti¢gee, for example, =0.74), the global attraction being the same at these densi-
Refs.[60,69,70). On the other handp®ff shows an attrac- ties. As a result the F-S transition of models delayed to a
tive primary well at contact separated from the secondarhigher solvent packing fraction than in caBeAt the same
well atr~D,+ DTS by a repulsive barrier, as with the HS time, one observes that the depth of the wells at long range
depletion potential. Although the link between the interactionincreases more than the corresponding repulsive barriers. As

061404-6



ATTRACTIVE FORCES IN STERICALLY STABILIZED. .. PHYSICAL REVIEW E66, 061404 (2002

C. Effect of solvent-solvent long range correlations

In the preceding section we have shown that the long
range attractive tail of the effective potential is quite sensi-
tive to the paramete¢™ of the solvent-solvent LJ potential.

A change ine* affects both the depth of the well and the
attraction range. Long range correlations between the solvent
particles are suspected to favor their removal from the inner
region between the solutes due to a stronger attraction by the
bulk [34] (see also, for example, the discussion of Janatik

al. [26] of the role of the solvent stickinesBecause of the
ensuing smoothing of the oscillations @¢'', it is useful to
study more specifically the influence of the range of the
solvent-solvent interaction. To this end, we consider here the

B @G“

truncated and shifted LJ potential, at a cutoff distangg:
24 | | | | Upy(r) = ULg(r) —Upy(reud, T<fey
16 i 1 0, r>reut-
0.8 | B L i
- The strength of the LJ potential is nost = 0.7 and for sim-
% o0 plicity D' was taken equal ter instead of 0.94 in the
Q. os b preceding section. The corresponding size ratidris 10,

viz., D,=100. The solvent packing fraction ig* =0.6 and
the Yukawa solute-solvent parameters were fixedjat9

-1.6
and z,,=2.5/0. The correspondingb&l!\,- was computed

24 for reyt=2.50, 40, and 40.96. As seen in Fig. 4, the at-
an tractive tail of®° is rather sensitive to the range wfy(r).
o 11 12 13 14 15 Forr¢,=2.50 andr =40 the effective force between two

(®) r'c solute particles in the solvent bath was also determined by
Monte Carlo simulatiofiFig. 4(b)]. As in our previous work,

we used the same meth@dketails are given in the Appendix

as that used by Dickmaat al. [71] for hard spheres. The
good agreement observed for both values gf [Fig. 4(a)]
confirms that this spectacular effect is real and not an artifact
of an approximate closure of the integral equations. For
ot _ reut=2.50, the eff_ective interaction _is repulsi\_/e_at long dis-

a result,®""" becomes on the whole more attractive at longtances, whereas it becomes attractive whepis increased
range in both models. However, higher valuespdf are  to 4. This gives some support to the physical interpretation
needed in casA to obtain the same global attraction than in based on the attraction from the bulk of the interstitial sol-
caseB [see Figs. @), 3(b)]. As a result, the F-F transition vent that was suggested above. It must be stressed here that
occurs also at highgr* but the shift of the F-S and F-F lines having at our disposal an accurate theoretical method is an
is not the same foA andB. The reason is th@g” cannot essential point for computing the phase diagram. Indeed, the
be deduced frond&'" by a mere increase @f*. Indeed, the length of simulations becomes really prohibitive when the
structure which is superimposed on the overall attractive taif@n9€ of the solvent-'sol\'/ent interaction increases so they can
and that is due to the layering of the solvent particles beP€ used only for validation purposes.

tween the solutes is more readily smoothed by an increase of SiNce the effective potential is essentially determined by
€* in caseB (see the discussion of Fig. 8 in RE84]). As a the solvent-solvent and solute-solvent correlatifsee Egs.

consequence, the widening of the region whéx is at- (7)-(13) and the discussion of the magnitudehsf in Ref.

tractive is eventually strong enough to favor the liquid phase[46]]’ we comparedyy(r) andga,(r) obtained by simula-

¢ di ructurel tentials. Th ; ¢ tion and by IE. The good agreement between simulation and
as for ordinary(structurelesspotentials. The comparison o IE confirms the accuracy of the FMF bridge functions. While

thef fpha;e boundane{ﬁ 9. 2Ab)] obtained withd & and ¢ (1) is barely affected by the cutoff, the contact value of
@}y c gives weight to this scenario since the two main fea—glz(r) is sensitive tor., (Fig. 5. It decreases when the
tures of the effective interaction are magnified by the HNCrange of the LJ potential increases, a result consistent with
closure[Fig. 3(b)]. the extrapolation to finite size ratios of the contact value
Because of the importance of the long range behavior ofheorem 34,65. As a result, weaker “depletion” effects may
the effective interaction, we discuss below in more detail thebe expected because fewer interstitial solvent particles are
role of the solvent self-attraction. involved, consistent with the observations made in the pre-

FIG. 3. (@) Reduced effective pair potentigd&i!, - for model
A. Dotted line,p* =0.7; dashesp* =0.76; solid line,p* =0.8. (b)
Reduced effective pair potentigib ! - for modelB. Dotted line,
p* =0.65; dashesp* =0.71; solid line,p* =0.74. Inset: compari-
son with HNC forp* =0.71: solid line ®&} ¢ dotted line &\ .
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05 ‘ '
10 10.5 1 11.5 12 12.5 13 5.5 6 rlc 65 7

FIG. 5. Solvent-solute pair distribution functiag(r/o) for
R=10 andp* =0.6 vs reduced distangéo. Same caption as Fig.
4(b).

IV. CONCLUSION

This study has shown that the complexity of the phase
behavior of real colloidal mixtures can be restored by taking
into account the specificity via models of the interactions
between components incorporating some aspects of real in-
teractions, namely, a short range repulsion and an attractive
tail. The most immediate consequence of this refined model-
ing is that the F-F phase can be stable even at high packing
fraction of solvent particles. This can be explained by a com-
® | | | | | petition between entropic and enthalpic contributions to the
(b)10 10.5 11 g 115 12 12.5 effective potential which produces two features of the effec-

tive potential. The first one is related to the steric effects as in

FIG. 4. () Reduced effective pair potenti@lde!’ for R=10  Pure hard sphere systems. The second and more specific one
andp* =0.6 and different cutoff distances of the solvent-solvent LJresults from the competition between the solute-solvent at-
potential. Solid lines from top to bottom: RHNC/FMF with,,  traction which tends to favor the solvation of the solutes and
=2.5,r.,,=4 and no cutoff. The dashed line shows the result ob-the self-attraction of the solvent which makes the effective
tained with ¢&I'™N° (see Fig. 5in Eq. (14) for r,,,=4. MC result  interaction between solutes more attractive at long range. By
from the integration of the effective ford€ig. 4b)] (with exten-  comparison with simulation, it was also confirmed that sig-
sion by BPE\c beyond 12.5): empty circles,r.=2.5; filed  nificant changes of the effective potential might result from
circles, r¢,;=4. (b) Reduced effective force foR=10 and p* seemingly benign alteration of the parameters of the interac-
=0.6 and different values af,,;. Empty circles(MC) and dashed tions. Besides making questionable the relevance of the hard
line (PRiND. rewr=2.5; filled circles (MC) and solid line  sphere model to the study of many real colloidal suspen-
(PRND: Teur=4- sions, especially when it concerns the solvent-solvent and

solute-solvent interactions, this state of affairs shows that
ceding section. The subtle long range behaviodsf| is, fgr.ther investiggtiong are clearly required. This observeq sen-
however, more difficult to guess from these tiny structuralSitivity emphasizes first the care that should be taken in the

changeg46]. This is confirmed by a comparison with the interpretation of some experimental observations. It also
peff compu.ted from the superposition approximatiaee calls for the development of more accurate theoretical meth-

Eq. (14)] which involves only the solvent distributio,, ods. On the other hand, a refined description of the interac-

: . . tjons might be required in order to consider—for example—
ab_out an |splated solute. Figure 4 s_hows g:?t tk_us metho ctually nonspherical solvent particles. Finally, theoretical
fails to predict good trends at long distandey,, being in-

= ) up progress in these directions would eventually enable devising
sensitive to changes of,. This shows thatb™ " is deter-  practical methods for controlling the stability of the various
mined by the fine structure @f;; andg,, which are coupled phases.

by the OZE. This coupling with the bulk fluid seems to be

amplified when the range of the solvent-solvent interaction is
the biggest65]. Arguments of a similar nature have been

invoked in Ref.[45] to analyze some combinations of  The simulations were partly supported by a grant of CPU
solvent-solvent and solute-solvent attractions. time by the CINES(Montpellier, Francge
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APPENDIX: SIMULATION DETAILS wherek is a unit vector along the line connecting the centers
1. Computing the free energy of the solute particles. For solute-solvent interaction with a

. . . ) hard core and an attractive tail, the force reads
Since the free energy cannot be obtained directly in an

(NVT) Monte Carlo simulation, we employed the same

method as in Ref.3]. It uses thermodynamic integration via N1 N1 duqo(U)
a charging parameter defined by Fi«D)= Z cosé + 2 ———cosd |,
contact
b=+ N e (A3)

A =0 corresponds to the HS reference potential ardl to oL
the full effective potential. The free energy of the effectivewhere is the angle K, r —R;). The first term in Eq(A3)
fluid reads thus relative to the HS contribution is computed as the thermal
average of the sum of c@sover the solvent particles in
1 sufficiently small shells near conta@tere the thickness of
F=Fot Jo <i<j q)e”(rii)> dX. (AL the shell is 0.02). The actual contact value is obtained by
(N2.V.,) extrapolation as in Ref72]. The effective force was deter-
mined up toD =12.5r, a separation at which the oscillations
are damped enough and about ten poiM8T simulations
were used to integrate the for¢eeyond 12.6d&H . was
used. Due to the range of the solvent-solvent interaction and
that of the resulting effective force, very large boxes were

For the free energyr, of the HS system, we took the
Carnahan-Starling expressinl]. (;-;®°"(ri)))n,.v.0,)
is the canonical average &f -;®°"'(r;;) for N, solutes in-
teracting withd, (this method is also useful to extrapolate

the RHNC free energy in the nonconvergence doain considered. For the two models the box size wax 32

We estimated that seven values Jofper solute packing 75,3 ang the number of small particles corresponding to
fraction 7, were sufficient to perform the numerical integra- —0.6 wasN,=5633. The value op* was checked by

tion. Because of the relatively long range of the ef“fectivemeasuring the average density at the edges of the box. For
interaction, we used 256 particules fp5>0.2 and 108 par- comparison, Dickmaret al. used a box size 2216x 1653
ticles for ,<<0.2. To reduce the simulation time, a parallel- for hard spk;eres with samet [72]. A standard neighbor list
ized algorithm with seven simultaneou.s simulations wag, - o employed73]. Finally for a given separation between
used to obtain the free energy for a given. About 15 the solutes, the calculation of the force fqr,=4 took three
value§ of, were ngxt u:;ed to draw the tiommon tangentdays for 200 000 production cycles and an equivalent phase
[that is, 105(NVT) simulations per value of*]. of equilibration on our workstations. Note that the efficiency
of the algorithm, namely, that relative to the neighbor list,
2. Computing the effective potential decreases dramatically when the solvent-solvent interaction
(I)eff was obtained by integra‘[ing the force between tworange ianeaSGE?s]. This renders impractical simulations
solute particles at a distan@ in a bath of solvent as pro- beyondr.,=4.

posed by Dickmamt al.[72]. The effective force is given by ~ The solvent-solute pdf;, was obtained by using a stan-
dard (NVT) simulation of the solvent in the field of the big

> > o Yukawa particle fixed at the center of a cubic box with size
F.(D)= | Fups[F-RI)KaN,, 12 AP
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